Rectangular M-tensors and strong rectangular M-tensors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M-Tensors and Some Applications

We introduce M -tensors. This concept extends the concept ofM -matrices. We denote Z-tensors as the tensors with nonpositive off-diagonal entries. We show that M -tensors must be Ztensors and the maximal diagonal entry must be nonnegative. The diagonal elements of a symmetric M -tensor must be nonnegative. A symmetric M -tensor is copositive. Based on the spectral theory of nonnegative tensors,...

متن کامل

An S-type singular value inclusion set for rectangular tensors

An S-type singular value inclusion set for rectangular tensors is given. Based on the set, new upper and lower bounds for the largest singular value of nonnegative rectangular tensors are obtained and proved to be sharper than some existing results. Numerical examples are given to verify the theoretical results.

متن کامل

Spectra of Symmetric Tensors and m-Root Finsler Geometry Models

In the framework of supersymmetric tensors and multivariate homogeneous polynomials, the talk discusses the relevance of the spectral properties of the Berwald-Moor, Chernov and Bogoslovski multilinear forms, towards the underlying geometry of the locally-Minkovski Finsler associated structures, which have been intensively investigated as promising candidate models for Special Relativity Theory...

متن کامل

A new S-type upper bound for the largest singular value of nonnegative rectangular tensors

By breaking [Formula: see text] into disjoint subsets S and its complement, a new S-type upper bound for the largest singular value of nonnegative rectangular tensors is given and proved to be better than some existing ones. Numerical examples are given to verify the theoretical results.

متن کامل

Representations of Rectangular m × n × p Proper Arrays

Let m = n. A rectangular m × n × p proper array is a three dimensional array composed of directed cubes that obeys certain connectivity and arrow constraints.[1],[3] Because of these constraints, the geometric structure of an m × n × p proper array is captured in a preferred m × n planar face. By associating each connected component present in the preferred face with a distinct letter, an m × n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ScienceAsia

سال: 2021

ISSN: 1513-1874

DOI: 10.2306/scienceasia1513-1874.2021.035